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a b s t r a c t

The clustering and classification of fracture orientations are important in rock mechanics and in brittle
tectonics, the latter of which includes the paleostress analysis of extension fractures hosting dikes or
mineral veins. Here, we present an unsupervised clustering method for the orientations of extension
fractures using mixed Bingham distributions. The method not only detects the elliptical clusters and
girdles made by the poles to such planar features, but also determines the appropriate number of those
groups by means of Bayesian information criterion (BIC) without a priori information. The method was
tested with artificial data sets, and successfully detected the assumed groups, when the clusters had little
overlaps. However, clusters with the common maximum concentration orientation and large aspect
ratios were distinguished, provided that their minimum concentration orientations were separated by
a large angle. Our method separated two stress states from natural data from a Miocene dike swarm in
SW Japan. The method also evaluated the probabilities of the stresses to form each of the dike.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The clustering of orientation data is important in various
branches of science and engineering. Discontinuity orientations in
rock material are carefully observed when surface and under-
ground excavations are made from efficiency and safety stand-
points (Priest, 1993). Their orientation distribution is important for
wellbore stability (Chen et al., 2008) and groundwater hydrology
(e.g., Panda and Kultilake, 1999; Ohtsu et al., 2008). Accordingly,
various clustering techniques for the orientations have been
proposed since the 1970s by researchers mainly in civil engineering
(e.g., Shanley and Mahtab, 1976; Wallbrecher, 1978; Hammah and
Curran, 1998, 1999; Peel et al., 2001; Marcotte and Henry, 2002;
Klose et al., 2005; Jimenez-Rodriguez and Sitar, 2006). Dortet-
Bernadet and Wicker (2008) suggest that Peel et al. (2001), who
clustered rock joints, stimulated researchers in other fields of
science to tackle the problem.

Such clustering is important for understanding brittle tectonics
as well. The orientations of healed microcracks (Lespinasse and
Pécher, 1986; Kowallis et al., 1987) and joints (Whitaker and
Engelder, 2005) are thought to indicate paleostress orientations.
maji).
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In addition, dike and vein orientations are used to infer all the axes
of the paleostress at the time of the vein or dike formation (Baer
et al., 1994; Jolly and Sanderson, 1997; Yamaji et al., 2010). The
clustering of vein orientations was used by Ahmadhadi et al. (2008)
to infer the timing of folding. The clustering of fracture orientations
has potential for investigating polyphase tectonics.

Fault-slip analysis has been used to study polyphase tectonics
(e.g., Etchecopar et al., 1981; Nemcok and Lisle, 1995; Yamaji, 2000;
Shan et al., 2003; Sato, 2006; Yamaji et al., 2006). The fault-slip data
resulting from such tectonics are called heterogeneous. Likewise,
we call a data set heterogeneous, if the data are collected from the
fractures that should be classified into some groups with different
origins.

In this paper we present a clustering method for dealing with
heterogeneous orientation data. It is assumed that the poles to
planar features of the same origin make an elliptical cluster or
a girdle that is approximated by a Bingham distribution (Bingham,
1974). This is the simplest orientation distribution to delineate
them (Fig. 1), and is easily related with the dilation of fractures by
overpressured fluids (Baer et al., 1994; Jolly and Sanderson, 1997;
Yamaji et al., 2010). Our method simultaneously fits a few Bing-
ham distributions to a set of heterogeneous data. That is, a mixed
Binghamdistribution is fitted to them. Our numerical technique not
only detects and separates the clusters and girdles, but also
determines their number from the orientation data themselves.
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Fig. 1. Equal-area projections showing the probability densities of the Bingham
distributions with different k1 and k2 values, both of which are negative in sign. The
distributions have orthorhombic symmetry, meaning that they are symmetric with
respect to the planes perpendicular to the unit vectors, e1, e2 or e3. Note that the
stereograms have different contour intervals: the range between the minimum and
maximum densities, i.e., PBðe1jK;EÞ and PBðe3jK;EÞ, is divided into 5 intervals.

Table 1
List of symbols. Superscript at the upper left and upper right of a symbol denote,
respectively, the number of iterations in the EM algorithm and the consecutive
number of Bingham components in a mixed Bingham distribution. Circumflex
accents indicate the quantities of the mixed Bingham distribution optimized for
a data set.

BIC Bayesian information criterion
E Orthogonal matrix representing the symmetry axes of a Bingham

distribution
e1 The minimum concentration axis of a Bingham distribution
e2 The intermediate concentration axis of a Bingham distribution
e3 The maximum concentration axis of a Bingham distribution
K The number of Bingham component of a mixed Bingham distribution
K Diagonal matrix with the diagonal components, k1, k2 and 0
L Logarithmic likelihood function
N The number of data
PB Probability density function of Bingham distribution
PmB Probability density function of mixed Bingham distribution
v Unit vector normal to a fracture plane
vn v of the nth fracture
x A five-dimensional vector representing a Bingham distribution
zn

k The membership of the nth datum to the kth Bingham component or
The responsibility of the kth one for the nth datum

q The set of the K vectors representing Bingham distributions
k1, k2 Concentration parameters of a Bingham distribution (k1� k2� 0)
6 The set of K mixing coefficients
6k The mixing coefficient of the kth Bingham component
s1, s2, s3 Principal stresses (s1� s2� s3)
F Stress ratio
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The method was tested with artificial data sets to demonstrate its
resolution, and with natural data sets from a dike swarm.

The analysis of clustering of dike orientations and vein orien-
tations will stimulate structural geologists and researchers in
related areas. Once fractures are classified, radiometric dating,
paleomagnetic, petrological and geochemical analyses, etc., of the
members of each class shed new light on the formation of the dike
and vein clusters and on their tectonic, volcanological and hydro-
logical implications.
2. Bingham and mixed Bingham distributions

The Bingham distribution is the simplest extension of the
multivariate normal distribution to the three-dimensional orien-
tation distribution of lines (e.g., Love, 2007). It is convenient to
consider antipodally distributed points on a sphere to represent the
lines that meet at the center of the sphere. The Bingham distribu-
tion is depicted by a girdle or an elliptical cluster of such points.

An elliptical cluster or a girdle has orthorhombic symmetry if it
is described by the Bingham distribution. That is, it has the three
symmetry axes that meet at right angles; two of them indicate the
orientations of maximum and minimum concentrations. The
remaining axis is known as the orientation of intermediate
concentration. Following Love (2007), we use the unit column
vectors, e1, e2 and e3, to refer to the orientations of the minimum,
intermediate and maximum concentrations, respectively (Table 1).
The cluster center is represented by e3, which is identified with the
s3-axis in Section 5 (Baer et al., 1994; Jolly and Sanderson, 1997;
Yamaji et al., 2010).

The paired parameters, k1 and k2, distinguish uniform, elliptical
and girdle distributions (Fig. 1): They are negative in sign, and their
absolute values, jk1j and jk2j, indicate the concentration of data
points from e3 to e1 and from e1 to e2, respectively, on the sphere. A
uniform distribution is indicated by k1¼ k2¼ 0. Circular and ellip-
tical distributions are indicated by k1¼ k2< 0 and k1< k2< 0,
respectively. Girdle distributions are denoted by the parameters
that satisfy k1� k2) 0.

If points on a unit sphere obey Bingham distribution, they have
the probability density (Love, 2007)

PBðvjK;EÞ ¼ 1
A
exp

�
vTETKEv

�
;

where v is the unit vector representing an orientation, A is the
normalization constant, T indicates matrix transpose,
E ¼ ðe1; e2; e3Þ is the orthogonal matrix representing the attitude
of the Bingham distribution, and K ¼ diagðk1; k2;0Þ. The distribu-
tion has five degrees of freedom: three for the orthonormal vectors,
e1, e2 and e3, and two for the concentration parameters. Accord-
ingly, the parameters of the distribution are represented by
a position vector, x, in a five-dimensional parameter space
(Appendix A). That is, the paired parameters, {K,E}, have a one-to-
one correspondence with a point in the space. We refer PBðvjxÞ to
the probability density of the Bingham distribution with the
parameters that are denoted by x.

The Bingham distribution is so flexible as to denote either an
elliptical cluster or a girdle made by the poles to fractures.
Accordingly, it is useful to assume that a heterogeneous set of
orientation data obeys the mixed Bingham distribution, which has
the probability density

PmBðvjq;6Þ ¼
XK
k¼1

6kPB

�
v
���xk�; (1)

where K is the number of elliptical clusters or girdles, 6k is the
compounding ratio or the mixing coefficient (Bishop, 2006) of the
kth Bingham distribution of which parameters are represented by
xk. The coefficients satisfy 0 < 6k � 1 and 61 þ/þ6K ¼ 1: 6k

means the significance of the kth subset. The argument, q, of the
function PmB in Eq. (1) stands for all the K vectors:

q ¼
n
x1;x2;.;xK

o
; (2)

and another argument of the function is 6 ¼ f61;62;.;6Kg.
Fig. 2 shows an examplewith the parameters, K ¼ 2,61 ¼ 0:4 and



Fig. 2. Equal-area projections showing probability densities of the Bingham compo-
nents 1 and 2, and their mixture with the mixing coefficients 0.4 and 0.6.
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62 ¼ 0:6. Fig. 3a shows the artificial data made from the mixed
Bingham distribution with three Bingham components ðK ¼ 3Þ.
The orientations generated from the first, second and third
components are distinguished by symbols, i.e., triangles, circles and
squares, respectively, on the equal-area projection.

Our task is the unsupervised clustering (e.g., Tan et al., 2005)
of the orientations. That is, in the case of Fig. 3a, it is required to
group the orientations into three by the orientations themselves
under the condition that the distinction of the symbols is masked.
3. Clustering

Given heterogeneous orientation data, we determine the
mixed Bingham distribution (Eq. (1)) that best fits the data. Each
Fig. 3. Artificial data generated from the mixed Bingham distribution with three component
which is indicated by triangles, circles and squares. (a) Equal-area projection showing the da
of each datum is depicted by a color in the ternary plot. Contours show the values of PmBðbq
by the contours and by the memberships of data. The tetrahedron with red, green, blue and
versus K, showing the prominent minimum at K¼ 3. (d) The optimal mixing ratios for the c
case. (e) Assumed and optimal concentration parameters. Those of the component 4 for K¼
the contours the ratio bk2=bk1.
Bingham component represents a homogeneous subset. The
goodness of fit is evaluated by the logarithmic likelihood
function,

Lðq;6Þ ¼
XN
n¼1

logePmBðvnjq;6Þ; (3)

where vn is the unit vector indicating the nth datum, N is the
number of data. The mixed distribution that best fits the N data is
given by the optimal parameter set, fbq; b6g, that maximizes this
function. The optimization of the parameter set is performed using
the expectation-maximization (EM) algorithm (e.g., Bishop, 2006)
from the following initial conditions.
3.1. Initial conditions

The EM algorithm starts from the initial parameter set, 0q,
where the superscript refers to the ordinal number of iterations. K
points are casted randomly around the origin of the parameter
space to make the initial vectors, 0x;.; 0x that fill up 0q (Eq. (2)).
This parameter is improved through the following E- and M-steps.
The optimal parameter set, fbq; b6g, at the time the algorithm is
terminated depends on the initial conditions. Accordingly, the EM
algorithm was started with different initial conditions more than
100 times to optimize the parameter set.
s. The data should be classified into 60-, 40- and 40-element subsets, the distinction of
ta set. In this case, three components (K¼ 3) were assumed. Therefore, the membership
; b6Þ. (b) Equal-area projection showing the optimal mixture model for the case of K¼ 4
black vertices indicate the correspondence of the memberships with colors. (c) The BIC
ases of K¼ 3 and 4. The third subset was erroneously subdivided into two in the latter
3 were bk41 ¼ �158 and bk42 ¼ �63. Solid lines with the labels from 0.1 through 1.0 are
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3.2. E-step

If data were obtained from a mixture of K fracture sets with
different origins, each datum should belong to one of the clusters or
the girdles corresponding to the K sets. Let zkn be themembership of
the nth datum to the kth set. This is exactly expressed by the binary
attributes 0 and 1 as z1n ¼ / ¼ zk�1

n ¼ 0, zkn ¼ 1 and
zkþ1
n ¼ / ¼ zKn ¼ 0. However, we do not knowwhich of the K sets
the nth datum should be assigned to. Therefore, the validity for the
nth datum to belong to the kth set with the parameter ix is esti-
mated not exactly but fuzzily as

izkn ¼ PBðvnjixkÞPK
k¼1PBðvnjixkÞ

: (4)

The left-hand side of this equation is called the responsibility of the
kth one for the nth datum or the membership of the datum to the
kth group, and satisfies 0 � iz � 1. In case of K ¼ 2, the nth datum
belongs to the first and second groups at the probabilities of, say,
10% and 90%, respectively. Then, the mixing coefficients are upda-
ted in this step as i6fizþ/þ zkN , where the constant of pro-
portionality is given by the normalization condition,
i6þ/þ i6 ¼ 1. The set, i6, is composed of those coefficients.

3.3. M-step

Keeping i6 unchanged, iq is improved to iþ1q by the numerical
maximization of the logarithmic likelihood function (Eq. (3)). The
simplex method (Nelder and Mead, 1965) was used for this
purpose.

3.4. Termination condition

The parameter set, fq;6g, is gradually improved by shuttling
the E- and M-steps for the mixed Bingham distribution to
approximate the given data. This iterative process is terminated
when the improvement of fq;6g becomes small. That is, the
termination condition, jiL� i�1Lj=i�1L < 10�6, is used for this
purpose, where i�1L and iL are the values of the logarithmic
likelihood function (Eq. (3)) at the end of the (i� 1)th and ith M-
step, respectively. We refer to the parameter set optimized for the
data as bq and b6. Likewise, if necessary, the optimal quantities are
indicated by circumflex accents such as bzkn, etc.
3.5. Number of components

Given a data set, the goodness of fit (Eq. (3)) is generally
improved by the increasing number of components, K. However,
every data set includes random errors. It is meaningless to fit the
mixed distribution to erroneous data: this makes the inferred
mixed distribution too complex. In addition, it is usually difficult to
describe entire fracture orientations in a rock body in question.
Biased observation can make it happen that two or three clusters
appear from the fracture orientations that actually make a girdle.
Accordingly, it is important to estimate an appropriate K value from
data themselves in a statistical sense. This is accomplished by using

BIC ¼ �2L
�bq; b6�þ ð6K � 1ÞlogeN;

called the Bayesian information criterion (Schwarz, 1978). The
right-hand side of this equation is evaluated from data and an
assumed K value: the coefficient (6K� 1) is the degree of freedom
of the mixed Bingham distribution with K components. The final
term in this equation is the penalty against increasing components.
The best K value minimizes BIC. That is, BICs are evaluated for
various K values, and the value corresponding to the minimum BIC
is chosen as the best. The mixed Bingham distributionwith the best
K value is thought to be the optimal mixture model for the given
data.
4. Test

The present method was tested, first, with artificial data sets. To
this end, orientations obeying Bingham distributions were gener-
ated using the rejection method (e.g., Press et al., 2007), and were
combined to make a data set. The sample data sets were generated
with the assumed values of K, q and6. The methodwas testedwith
the data if the values were restored only from the data.
4.1. Number of components

We tested the present method, first, with the data in Fig. 3a to
see if BIC works. The data set was made of 60-, 40- and 40-element
subsets. As a result, the correct number of the subsets was obtained
by minimizing BIC. There are three distinctive clusters in Fig. 3a.
Therefore, if we do not know the method of data generation, three
seems the appropriate value for K. The best K value, which is
indicated by the minimum value of BIC, was consistent with this
intuition (Fig. 3c). For K greater than 3, the three clusters were
unnecessarily subdivided into two or more groups (Fig. 3b).

When three components were assumed (K¼ 3), the symmetry
axes of the Bingham components were accurately located (Fig. 3a).
But, the mixing coefficients b61 and b62 were slightly under- and
over-estimated, respectively (Fig. 3c), because the peripheral parts
of the corresponding clusters overlapped with each other. In
contrast, b63 was accurately evaluated, as the cluster of the third
component was clearly separated from the other clusters.

The membership of the nth datum to the first, second and third
Bingham components, bz1n, bz2n and bz3n, are depicted by the color hue
of the symbols plotted on the stereogram in Fig. 3a. It follows from
Eq. (4) that the memberships of the nth datum satisfybz1n þ bz2n þ bz3n ¼ 1. Therefore, the ternary diagram in this subfigure
is used to depict the correspondence between a color and a triplet
of the memberships. Most of the data points in Fig. 3a have one of
the primary colors, red, green and blue, indicating that the sepa-
ration of the data set into homogeneous subsets was almost perfect.
A few exceptions to this appeared in the peripheral part of the first
subset where the first and second subsets overlapped. There are
a few green triangles in Fig. 3a, indicating misclassified data. In
contrast, all the data from the third Bingham component were
correctly classified into the third class ðz3nz1Þ.

When four components were assumed K¼ 4, the third cluster
was divided into two: the fourth one was located at the densest
part of the third cluster. In this case, the memberships satisfybz1n þ bz2n þ bz3n þ bz4n ¼ 1. It follows that, in the same way as the case
of K¼ 3 where a ternary plot indicates memberships, a quartet of
the memberships in the case of K¼ 4 are represented by a point in
or on the surface of a regular tetrahedron. So, the quartets are
denoted by a colored tetrahedron in Fig. 3b. Its four vertices indi-
cate the permutations, ½1;0;0;0�, ½0;1;0;0�, ½0;0;1;0� or ½0;0;0;1�,
where the first through fourth memberships are bracketed. These
are indicated by red, green, blue and black, respectively, in the
subfigure.

The symmetry axes, mixing coefficients and responsibilities
were accurately evaluated, but the optimal values of k1 and k2 were
less accurate than them. The open circles and crosses in Fig. 3e
show that the parameters were determined with the errors of
10e20%. This is because the parameters were determined from
minute differences in the elongation and spread of the clusters.
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4.2. Resolution

The next test was made for investigating the resolution of the
method using a suite of artificial data sets with the two Bingham
components that were generated by the procedure in Fig. 4. Data of
the component 1 were rotated about the horizontal EeW orienta-
tion andmixed with those of the component 2. The rotation angle j
was increased from 0� to 90� with the interval of 10� to see if the
method can separate them. The smaller the angle, themore difficult
it is to separate the components from a mixed data set. Figs. 5e7
show the results.

It was found that the two components were separated
successfully for jU 40�. This is demonstrated by the graphs of BIC
in Fig. 6. The angle of this threshold angle is not surprising because
the clusters of both the components have the half widths of about
20� (Figs. 4 and 5a). The clusters were easily resolved if j was
greater than the summation of the half widths. The orientation data
on the borders of the clusters had intermediate memberships,
which are depicted by red to yellow in Fig. 5a.

Since the first component had an oval cluster with a relatively
small aspect ratio, e1- and e2-axes were determined with errors
larger than those of the second component. The cluster of the latter
was so elongated that its three axes were accurately determined
even for j < 20�. The misfit of the determined axes from the
assumed ones was less than 10� for j ¼ 0� (Fig. 5b). In contrast, the
determination of the concentration parameters was difficult and
the results were unstable. Even for the cases of j > 40�, the bk1 andbk2 values deviated from the assumed values (Fig. 7).

Evenwhen two clusters have commonmaximum concentration
orientations, the Bingham components corresponding to the clus-
ters can be accurately separated from mixed data in some cases.
Fig. 8 shows an example, where the two Bingham components,
each of which had 100 data, had elongated clusters with the e2-axis
(elongation axis) making a right angle. The assumed mixing coef-
ficients were61 ¼ 62 ¼ 0:50. The optimal mixture model had the
coefficients b61 ¼ 0:55 and b62 ¼ 0:45, indicating roughly correct
separation. In addition, the BIC exhibited a prominent minimum
correctly at K¼ 2. The method succeeded in separating the Bing-
ham components. In this case, the success was due to the condi-
tions: (1) both the components had large enough number of data,
and (2) the elongated clusters had the intermediate concentration
orientations separated by a large enough angle. Orientation data in
the overlapping part of the two clusters had intermediate
Fig. 4. Equal-area projections illustrating the method of generating artificial data sets. Subse
under the stereoplots. Both the groups have the maximum concentration orientations in com
angle of j and mixed with those of Subset 2 to make a mixed Bingham distribution. The orie
Ten data sets were generated in this way with j¼ 0, 10, . 90� .
memberships, but those away from the overlapping part had the
extreme values bz2z0 or 1.

4.3. Application to natural data

The present method was applied to the orientation data from
286 fracture surfaces in San Manual copper mine, Arizona (Shanley
and Mahtab, 1976), because the data set has been used as
a benchmark of clustering techniques (Klose et al., 2005; Jimenez-
Rodriguez and Sitar, 2006). Equal-area projection of the data clearly
shows three clusters (Shanley andMahtab,1976) (Fig. 9a). Since the
cluster centers were separated byw90�, it was easy for our method
to capture the clusters (Table 2).

The BIC of the San Manual data set demonstrated that three was
the most adequate number of clusters for the data (Fig. 9b). There
are a small number of data points with intermediate colors in
Fig. 9a, indicating the clear separation of the data into three groups.
In case of K¼ 4, such data points appeared along the base circle of
the stereo plot, resulting in a larger BIC value.

5. Paleostress analysis of dike or vein orientations

5.1. Method

Bingham distributions or the orientation distribution with
orthorhombic symmetry was applied to dike orientations by Baer
et al. (1994) and Jolly and Sanderson (1997) to infer the state of
stress when the dikes were formed. The JollyeSanderson method
was applied not only to igneous dikes but also tomineral veins (e.g.,
André et al., 2001; Mazzarini and Isola, 2007; Yamaji et al., 2010).
Those authors identified the symmetry axes of the distribution, e1,
e2 and e3, with the s1-, s2- and s3-axes, respectively. Recently,
Yamaji et al. (2010) showed that the stress ratio,
F ¼ ðs2 � s3Þ=ðs1 � s3Þ, of the stress state that affected the
formation of epithermal veins could be approximated by the ratio
of the concentration parameters, k2=k1.

Accordingly, when a mixed Bingham distribution is fitted to the
orientation distribution of dikes or veins, we interpret the
symmetry axes of each Bingham component as the principal axes of
the paleostress that affected the formation of the dikes or veins
corresponding to the data that have the highest memberships to
the component. And, the concentration parameters are converted
to stress ratios.
ts 1 and 2 were generated from the Bingham distributions whose parameters are shown
mon. The orientations of Subset 1 were rotated about the e1-axis of the subset by the
ntations from Subsets 1 and 2 are denoted by triangles and closed circles, respectively.



Fig. 5. Equal-area projections showing the mixed Bingham distributions generated
through the procedure of Fig. 4 with j¼ 40� and 0� . Bold crosses denote the symmetry
axes that were used to generate the artificial data. The optimal stress axes and
memberships were obtained with K¼ 2. The bz1 value of each orientation datum is
indicated by color gradation. That is, if triangles and circles in the stereoplots are
painted black and white, respectively, the mixed data are separated into the correct
two classes.

Fig. 6. The BIC versus K for the artificial data sets generated in the way illustrated in
Fig. 4 with the angles, j¼ 0, 10, . 90� . The BIC shows the minimum at K¼ 2 for
jU 40� .

Fig. 7. The concentration parameters of the mixed Bingham distributions that best fit
the data sets with the j values from 0� through 90� . Crosses denote the assumed
values. Gray lines with the labels from 0.2 through 0.7 are the contours of the ratiobk1=bk2.
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It is not surprising that factors including fluctuation in the state
of stress, interactions among fractures, etc., lead to the errors of
stress axes by w10� in paleostress analysis. The difference of
principal orientations at this level corresponds to aw0.2 difference
in stress ratio (Yamaji and Sato, 2006). Therefore, we should be
tolerant of uncertainty in the ratio at around 0.2. In addition,
the ratio is determined less accurately than stress axes, because the
errors of the concentration parameters propagate to that of the
ratio (Figs. 3e and 7).
Fig. 8. (a) Equal-area projection demonstrating the possibility of separating the two
Bingham components that have the maximum concentration orientations in common.
Their e2 orientations meet at a right angle. (b) BIC versus K for the mixed data in (a).
5.2. Application to natural data

The present method was applied to the natural data from
Miocene andesitic dikes in the Ishizuchi area (Nagai and Horikoshi,
1955), Southwest Japan (Fig. 10). They are called the Kuromoritoge
dike swarm (Yoshida et al., 1993), and were found in the Lower
Miocene Kuma Group and the coeval volcanic rocks. At the time
they intruded, the volcanic center existed underMount Saragamine
just before the collapse event to form the Ishizuchi cauldron at



Fig. 9. The benchmark test of the present method using the fracture orientation data
from San Manual Copper mine, Arizona (Shanley and Mahtab, 1976). (a) The clustering
result for the case of K¼ 3. Crosses denote the cluster centers, and the probability
distribution of the mixed Bingham distribution optimal for the data is shown by
contours. Equal-area, lower-hemisphere projection. (b) The BIC of the data shows the
minimum at K¼ 3, indicating that the appropriate number of partitions was 3.

Table 2
The parameters of the clusters detected from the SanManual data set by the present
method (Fig. 9).

Cluster 1 Cluster 2 Cluster 3ce1 259�/75� 040�/75� 092�/16�ce2 162�/02� 258�/12� 184�/08�ce3 071�/15� 166�/09� 300�/72�

k1 �5.0 �15.8 �12.6
k2 �3.2 �6.3 �4.0b6 0.52 0.30 0.18
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w15 Ma (Yoshida, 1984). We use the orientation data from the 37
dikes reported by Kusuhashi and Yamaji (2001). Fig. 11 shows the
data and the result.

We found that the data were explained by the mixture of two
Bingham distributions: BIC of the data showed the minimum at
K¼ 2 (Fig. 11b). The two cluster centers in the stereogram were
located in the SSW and NNW directions. The stress state corre-
sponding to the former, referred to as Stress A, had the valuesb6 ¼ 0:69, bk1 ¼ �12:6, bk2 ¼ �4:00 and bF ¼ 0:32. The second
cluster represents Stress B with the parameters b6 ¼ 0:31,bk1 ¼ �79:4, bk2 ¼ �6:3 and bF ¼ 0:08.

Both the stress states had s3-axes that meet the trend of the
Southwest Japan arc at angles greater than w60�. The roughly
Fig. 10. Geologic map of around the Ishizuchi area, Southwest Japan, simplified from Yoshi
Kusuhashi and Yamaji (2001).
arc-perpendicular s3-orientations are consistent with the inter-
pretation that the magmatism in the Ishizuchi area began in the
final stage of back arc opening in the Japan Sea (Kobayashi, 1979;
Yoshida, 1984; Yamaji and Yoshida, 1998; Kusuhashi and Yamaji,
2001). Stress B was possibly the regional extensional tectonics.
Local factors, i.e., the topographic loading of volcanoes and the
pressure from amagma chamber may have affected Stress A, which
had a westerly plunging s1-axis. Mt. Saragamine is thought to have
been the volcanic center at the time of dike intrusion (Yoshida,
1984). The plane defined by the s1- and s2-axes of Stress A runs
roughly through the study area and Mt. Saragamine, suggesting the
effect of magma pressure.

Similar stresses were found independently from mesoscale
faults in the Kuma Group, a non-marine sedimentary package older
than the dike swarm by a few million years. Fault-slip data were
collected in the same area (dashed line in Fig. 10) by Kusuhashi and
Yamaji (2001). Fig. 11c shows the result of the multiple inverse
method (Yamaji, 2000), where clusters on stereograms represent
the stresses significant for the data. Namely, stresses with nearly
vertical and westerly inclined s1-axes were found, and both the
stresses had horizontal s3-axes. The principal orientations are
similar to those inferred from the dikes.

The purpose of this subsection is to test the method with
a natural data set, and to see if it leads to geologically relevant
results. The tectonic and volcanological implications of the dikes
should be drawn from increased data.
6. Discussion

Several numerical methods have been proposed for clustering
fracture orientations (Shanley and Mahtab, 1976; Pecher, 1989;
Hammah and Curran, 1998; Peel et al., 2001). Klose et al. (2005),
Jimenez-Rodriguez and Sitar (2006) compared some of the
methods and their own ones using the San Manual data (Fig. 9). All
the methods determined cluster centers in similar orientations for
K¼ 3.

Unlike those techniques, the present method aims not only at
clustering orientation data but also at paleostress analysis of dikes
and mineral veins. If a group of dikes or mineral veins were formed
in fractures dilated by overpressured fluids, the variation in fracture
orientations enables us to estimate the state of stress affecting the
formation. The reason for this is that the pressure must have
overcome the normal stresses on the fractures (Delaney et al.,
1986), where the normal stress acting on the plane normal to the
unit vector v under the stress tensor s is written as vTsv. It is seen
that normal stress has orthorhombic symmetry with respect to the
da (1984). Dotted line shows the area where the attitudes of dikes were measured by



Fig. 11. Result of the present method applied to the 37 dike orientations obtained at
the western flank of the Ishizuchi Cauldron (Fig. 10). (a) Lower-hemisphere, equal-area
projection. The principal axes of Stresses A and B inferred from the orientations are
indicated by stars and diamonds, respectively. Solid lines are the contours of the
theoretical probability density of the mixed Bingham distribution that best fit the data.
Memberships of the data points are denoted by the gradation between black and white
circles. (b) BIC versus K for the Ishizuchi data. (c) The s1- and s3-axes of the paleos-
tresses determined by the multiple inverse method (version 5) (Yamaji, 2000) from the
fault-slip data obtained in the same area by Kusuhashi and Yamaji (2001). The data
were collected from the Kuma Group (Fig. 10). Dotted lines highlight the clusters of
stress tensors possibly corresponding to the stresses in (a). Paired stereograms show
the s1- and s3-axes of stress tensors inferred from the data. Lower-hemisphere, equal-
area projections.

Fig. 12. Contours on an equal-area projection show normal stress magnitudes acting
on planes with various orientations. In this case, F is assumed to be 1/2. This pattern is
symmetric with respect to the principal stress planes.
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principal stress planes (Fig. 12). Therefore, elongated clusters and
girdles made by the poles to those structures must be identified by
clustering for paleostress analysis, because the orthorhombic
symmetry of such clusters reflects that of a stress tensor (Baer et al.,
1994; Jolly and Sanderson, 1997; Yamaji et al., 2010). There is no
need to distinguish the elongated clusters with the common center
in Fig. 8 for people who aim only at clustering fracture orientations.
However, we have to distinguish such clusters so that we can detect
the stresses indicated by the clusters. Therefore, we employed
Bingham distributions, which have probability distributions with
orthorhombic symmetry (Fig. 1).

The present method is not the first to make use of an informa-
tion criterion to determine the number of partitions in the clus-
tering of orientation data. This has been done by Hammah and
Curran (1998), Peel et al. (2001) and Dortet-Bernadet and Wicker
(2008), but the clusters captured by their methods did not always
have orthorhombic symmetry. The method of Hammah and Curran
(1998) detected circular clusters. Accordingly, those methods are
not convenient for paleostress analysis. Fitting a mixed Bingham
distribution combined with an information criterion is suitable for
determining stresses from heterogeneous orientation data.

7. Conclusion

For geotechnical modeling and understanding brittle tectonics,
we propose a clustering technique for heterogeneous orientation
data by means of the mixed Bingham distribution. Bingham
distributions are so flexible that they can describe not only the
elliptical clusters but also the girdles of the orientations. In addi-
tion, paleostress analysis is straightforward when the distributions
are fitted to the orientations of tensile fractures. If the clusters have
little overlap, it is easy for our method to separate them and to
determine the size and the aspect ratio of the clusters. In addition,
elongated clusters with a common maximum concentration
orientation can be separated, if a few conditions are satisfied.

Tests with artificial data sets demonstrated that the number of
Bingham components was successfully estimated by means of
Bayesian information criterion (BIC), if Bingham components were
identified from heterogeneous orientation data. The method was
applied to a dike swarm near a Miocene cauldron in Southwest
Japan, and detected two paleostress states.

Acknowledgments

We are grateful to Tom Blenkinsop and an anonymous reviewer,
whose comments and suggestions were very helpful for improving
the manuscript. We thank Takeyoshi Yoshida for his comment on
the magmatism in the Ishizuchi area. This work was partly sup-
ported by the grants 22340150 and 21740364 from JSPS.

Appendix A. Parameter space

For the EM algorithm to work, a parameter space was defined to
indicate the parameters of a Bingham component, E and K. There
are two necessary conditions for this space. First, the every point in
the space should have a one-to-one correspondencewith the pair, E
and K. Second, distances in the space should not be affected by the
coordinate rotations in the physical space to guarantee the accuracy
and resolution of the method to be free from the choice of
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a coordinate system. To meet these demands, we modified the 5-
dimensional stress space of Sato and Yamaji (2006).

A point in this modified space was represented by the position
vector

x ¼ rx (A1)

where r and x are distance from the origin of the 5-dimensional
space and the unit vector indicating a ray from it. The combina-
tion of the parameters fE; k1; k2g is transformed to x as follows.

In this work, we use the distance,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k1k2 þ k22

q
: (A2)

The right-hand side of this equation is the square root of the second
basic invariant of the tensor, diagð�k1 � k2; k2; k1Þ, which is one of
the simplest deviatoric tensors composed from k1 and k2. The
second basic invariant is generally a measure of anisotropy. By
definition, the concentration parameters satisfy k1 � k2 � 0. Thus, in
case of k1 ¼ 0, we obtain x¼ 0 from Eqs. (A1) and (A2).

In case of k1s0, we use the ratio, rhk2=k1, to calculate x. This
ratio has a value between 0 and 1. And, we use the deviatoric tensor,

2 ¼ E
�
diagð2� r;2r � 1;�r � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3r2 � 3r þ 3
p �

ET: (A3)

Let 2ij be the ijth component of this tensor. Since the trace of 2 is
invariant under the rotation by the action of E in Eq. (A3), the
equation

211 þ 222 þ 233 ¼ 0; (A4)

holds independent of E. Then, the components of the ray are given
by8>>>>><>>>>>:
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x3 ¼ 223; x4 ¼ 231; x5 ¼ 212:

(A5)

This linear equation was originally introduced to fault-slip analysis
by Sato and Yamaji (2006). In terms of Eqs. (A1), (A2) and (A5), we
obtain x corresponding to fE; k1; k2g.

On the other hand, given a point x in the parameter space, the
parameters E, k1 and k2 are calculated as follows. In case of x¼ 0, we
immediately obtain k1 ¼ k2 ¼ 0. This means a uniform orientation
distribution in the physical space. Therefore, we do not need to
calculate E. In case of xs0, we have r ¼ jxj and x ¼ x=r. It follows
from Eqs. (A4) and (A5) that8>>>><>>>>:
211 ¼�

�
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6

p
	
x1�

�
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2

p þ 1ffiffiffi
6

p
	
x2

233 ¼
ffiffiffiffiffiffiffiffi
2=3

p ðx1þx2Þ223 ¼ 232 ¼ x3;231 ¼ 213 ¼ x4;212 ¼ 221 ¼ x5;

where xi is the ith component of x. Then, E and r are obtained by
solving the eigenproblem of 2 (Eq. (A3)). That is, E is composed as
E¼ ðe1;e2;e3Þ, where ei is the 3�1-matrix representing the
eigenvector corresponding the ith eigenvalue. Let 21 � 22 � 23 be
the eigenvalues. Then, we obtain r¼ ð22�23Þ=ð21�23Þ. Substituting
k2 ¼ rk1 into Eq. (A2) we have r2 ¼ ðr2þrþ1Þk21. Since k1 must be
negative in sign, we obtain

k1 ¼ �r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r þ 1

p
: (A6)

Using Eq. (A6) we finally get k2 ¼ rk1.
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